Strategic Plan for VLBNO at Homestake

Presented to Homestake Workshop

by
Tom Kirk
Brookhaven National Laboratory

Lead, S. Dakota February 9, 2006

Summary Case for VLBNO in DUSEL

- All parameters of neutrino oscillations can be measured in <u>one</u> experiment
 - every one of the oscillation parameters is important to particle physics
 - the oscillation parameters contribute to important cosmology questions
 - a v_e appearance experiment is required to determine <u>all</u> the parameters
 - a <u>broadband</u> Super Neutrino Beam at <u>very long distances</u> combined with the ability to identify <u>quasi-elastic neutrino scattering</u> in the detector is key
 - the Very Long Baseline Neutrino Oscillation (VLBNO) Exp. is the best method
- The massive VLBNO detector can provide <u>additional</u> <u>forefront physics</u>
 - a powerful next-generation *Nucleon Decay* search
 - supernova, atmospheric and geo-neutrino neutrino investigations
 - a deep underground detector in the prospective NSF DUSEL is ideal for VLBNO
- The CP-violation parameter δ_{CP} is the most difficult number to determine
 - matter effects interact with CP-violation effects to produce intrinsic ambiguities
 - the CP-violation phase δ_{CP} has distinct effects over the <u>full 360° range</u>
 - systematic errors are minimized using a single detector in a broadband beam
 - the VLBNO detector can be staged in ~100KT modules as the program develops
 - antineutrino running offers a complementary way to demonstrate CP-violation and may be pursued at a later stage of VLBNO if demanded by the physics

Super Neutrino Beam to DUSEL Candidate Sites

Electron Neutrino Appearance by Oscillation in Vacuum

Electron Neutrino Appearance by Oscillation in Vacuum

Electron Neutrino Appearance – CP Phase Sensitivity

Electron Neutrino Appearance – CP Phase Sensitivity

A Word About Primary Proton Beam Energy

Strategy for a VLBNO Program at DUSEL

Educate and promulgate the *VLBNO method* in the HEP community

- the power of a single beam and a single detector is gradually being appreciated
- the ability to distinguish quasi-elastic events from background is now in place (the pattern recognition work of Chiaki Yanigasawa is critical to this point)
- the magnitude of $\sin^2(2\theta_{13})$ will be bounded or measured in the next few years by T2K plus reactor experiments, showing whether CP-violation can be measured by any super neutrino beam experiment, ie., $\theta_{13} > \sim 2-3$ degrees
- even if $\sin^2(2\theta_{13})$ < 0.01, the VLBNO experiment remains the most cost-effective way to measure the other neutrino oscillation parameters to good precision
- the narrow-band, off-axis method requires multiple detectors plus long antineutrino running to achieve a complete measurement of all the oscillation parameters to determine δ_{CP} without ambiguities (requires $\theta_{13} > \sim 2-3$ degrees)

Promote a Super Neutrino Beam source from BNL or Fermilab

- DUSEL site candidates presently include both Homestake and Henderson
- in consequence, the very long baselines needed by VLBNO could be realized from BNL or Fermilab
- Europe and Japan are not geographically positioned to perform a VLBNO exp. (Japanese physicists are now thinking about a beam to Korea from Tokai)
- the U.S. particle physics program wins with either BNL or Fermilab as a source

Strategy for a VLBNO Program at DUSEL (Cont.)

Organize to produce the necessary strategy and design documents

- create formal **Strategic Plan** documents for the v beam and detector(s)
- begin work on Conceptual Design Reports for v beam and detector

 (a lot of this work is already complete but it needs to be consolidated in a comprehensive and readable report)
- solicit NSF/DOE R&D support for initiation of **Technical Design Reports** for the v beam and detector (the technical report needs extensive engineering and project management support, hence significant development funding from the agencies)

Agree upon a schedule and organization basis for doing these documents

- today is not too soon for agreeing on the Strategic Plan and its schedule
- the plan and schedule shown next is optimistic but not unbelievable...

Homestake VLBNO Program Timeline

v Beam Accelerator Program Timeline

Action Dates

Activities

Conclusions / Action Items

- Neutrino Oscillation parameters can be completely determined within the next two decades
- The most effective method is the VLBNO + Wideband Super Beam
- A Megaton-class Water Cerenkov Detector can do this experiment (perhaps built in modules and staged)
- Either BNL or Fermilab could be the source of an effective v beam
- Combining VLBNO with the *Nucleon Decay Search* in the *NSF DUSEL* yields the best science and the most cost effective plan for the U.S.
- The next steps to pursue for realizing the VLBNO in DUSEL are:
 - create formal *Strategic Plan* documents for the v beam and detector(s)
 - begin work on Conceptual Design Reports for v beam and detector
 - solicit NSF/DOE R&D support for initiation of *Technical Design Reports* for the v beam and detector

